Seismo-acoustic propagation near thin and low-shear speed ocean bottom sediments using a massive elastic interface.
نویسندگان
چکیده
The seafloor is considered to be a thin surface layer overlying an elastic half space. In addition to layers of this type being thin, they may also have shear wave speeds that can be small (order 100 m/s). Both the thin and low-shear properties, viewed as small parameters, can cause mathematical and numerical singularities to arise. Following the derivation presented by Gilbert [Geophys. J. Int. 133, 230-232 (1998)], the surface layer is approximated as a thick, finite-thickness interface, and modified ocean bottom fluid-solid interface conditions are derived as jump conditions across the interface. The resultant interface conditions are incorporated into a seismo-acoustic parabolic equation solution, and this interface-based solution is benchmarked against existing solutions and previously derived modified fluid-solid interface jump conditions. Accuracy quantification is given via dimensionless interface thickness parameters.
منابع مشابه
Computationally efficient parabolic equation solutions to seismo-acoustic problems involving thin or low-shear elastic layers.
Shallow-water environments typically include sediments containing thin or low-shear layers. Numerical treatments of these types of layers require finer depth grid spacing than is needed elsewhere in the domain. Thin layers require finer grids to fully sample effects due to elasticity within the layer. As shear wave speeds approach zero, the governing system becomes singular and fine-grid spacin...
متن کاملStudy of spatial variability of surficial shallow water sediment properties with wavelet correlation analysis using synthetic data
Seismic waves traveling in the water/sediment or sub-bottom sediment interface have been the subject of considerable interest in underwater acoustics in recent years. Some progress has been made in understanding the propagation and attenuation characteristics of interface waves in different geological environments. However, the generating mechanisms are poorly understood. In particular, what is...
متن کاملCharacteristics of sound propagation in shallow water over an elastic seabed with a thin cap-rock layer.
Measurements of low-frequency sound propagation over the areas of the Australian continental shelf, where the bottom sediments consist primarily of calcarenite, have revealed that acoustic transmission losses are generally much higher than those observed over other continental shelves and remain relatively low only in a few narrow frequency bands. This paper considers this phenomenon and provid...
متن کاملElastic parabolic equation solutions for underwater acoustic problems using seismic sources.
Several problems of current interest involve elastic bottom range-dependent ocean environments with buried or earthquake-type sources, specifically oceanic T-wave propagation studies and interface wave related analyses. Additionally, observed deep shadow-zone arrivals are not predicted by ray theoretic methods, and attempts to model them with fluid-bottom parabolic equation solutions suggest th...
متن کاملComparison of simulations and data from a seismo-acoustic tank experiment.
A tank experiment was carried out to investigate underwater sound propagation over an elastic bottom in flat and sloping configurations. The purpose of the experiment was to evaluate range-dependent propagation models with high-quality experimental data. The sea floor was modeled as an elastic medium by a polyvinyl chloride slab. The relatively high rigidity of the slab requires accounting for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 135 1 شماره
صفحات -
تاریخ انتشار 2014